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SUMMARY 
It is common knowledge that flow around bluff bodies exhibits oscillatory behaviour. The aim of the present 
study is to compute the steady two-dimensional flow around a square cylinder at different Reynolds 
numbers and to determine the onset of unsteadiness through a linear stability analysis of the steady flow. 
Stability of the steady flow to small two-dimensional perturbations is analysed by computing the evolution 
of these perturbations. An analysis of various time-stepping techniques is carried out to select the most 
appropriate technique for predicting the growth of the perturbations and hence the stability of the flow. The 
critical Reynolds number is determined from the growth rate of the perturbations. Computations are then 
made for periodic unsteady flow at a Reynolds number above the critical value. The predicted Strouhal 
number agrees well with experimental data. Heat transfer from the cylinder is also studied for the unsteady 
laminar flow. 
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1. INTRODUCTION 

The subject of stability of fluid motion is one of the central problems of fluid mechanics. 
Occurrence of flow instabilities is commonplace in engineering applications and the importance 
of the study of such phenomena need not be emphasized. In the present study the focus is on 
investigating an instability which causes a laminar steady flow behind a square cylinder to give 
rise to a laminar unsteady flow. The objective is to determine the point of instability using a linear 
stability analysis of the steady flow. 

Stability of fluid motion is a fertile research area and there exists large body of literature on the 
subject. An attempt is made to summarize the available studies which are directly pertinent to the 
current investigation. The fundamental ideas of linear stability analysis appear in the texts of 
Chandrasekhar' and Iooss and Joseph.2 Continuation methods described by Kubicek and 
Marek3 have been employed in the present study to compute steady flows. Linear stability has 
been analysed by solving the initial value problem for the perturbation quantities. Ungar and 
Brown4 study the stability of captive rotating drops by computing the eigenvalues of the 
Jacobians of the corresponding steady flows. A similar approach is utilized by Jenkins and 
Proctor' to determine the flow transitions in Rayleigh-Benard convection. The approach of 
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solving the initial value problem has been utilized by Ghaddar et d6*' in studying the stability of 
flow over grooved channels. The problem of vortex shedding behind rectangular cylinders has 
been investigated both numerically and experimentally by Davis et aL8 and Okajima.g Gresho 
and Chan'O have utilized the problem of unsteady vortex shedding behind a square cylinder as a 
sample problem for illustrating the use of various discrete projection methods. In all of these 
studies, computations are limited to the unsteady periodic flow around a rectangular cylinder. A 
finite element study utilizing linear stability analysis for predicting the onset of vortex shedding 
behind bluff bodies is presented by Jackson." This study employs solution of the eigenvalue 
problem for locating the point of instability. In the present study the initial value problem is 
solved to investigate the linear stability of steady flow around a rectangular cylinder. 

The aim of this study is to predict the onset of unsteadiness in the flow around a square cylinder 
by using linear stability analysis for two dimensions and to compute the periodic vortex shedding 
at a representative Reynolds number beyond the point of instability. This procedure involves 
three steps-omputation of steady flow at different Reynolds numbers, analysis of linear stability 
of this flow and subsequent computation of the periodic vortex shedding. This approach, followed 
by Kelkar,14 provides a systematic procedure for the investigation of the flow instability and the 
determination of the onset of unsteadiness. Further, solution of the linearized problem governing 
the evolution of perturbations to a steady flow is computationally much less intensive than solving 
the full non-linear unsteady problem for determining the onset of unsteadiness. An analysis of 
various time-stepping techniques is provided to select a technique which does not modify the 
nature of the evolution of perturbations and predicts the stability of the steady flow correctly. 
Details of each of these steps are described in the following sections. Finally, the results of the 
computations of unsteady laminar heat transfer at a Reynolds number above the critical value are 
also presented. 

2. MATHEMATICAL FORMULATION 

The physical problem considered in this study is the two-dimensional flow of an incompressible 
fluid around a square cylinder placed in a uniform stream. In order to make the problem 
computationally feasible, artificial confining boundaries are placed around the flow. However, the 
boundaries are sufficiently far from the body so that their presence has little effect on the 
characteristics of the flow near the body. Figure 1 shows the computational domain. Since the 
properties of the fluid are assumed to be constant, the flow field is decoupled from the 
temperature field. The governing equations and the boundary conditions for the flow and 
temperature fields are described below. 

2.1. Flow3eld 

linear stability analysis and computation of the periodic unsteady flows. 
As stated earlier, prediction of the flow field involves computation of the steady flows, their 

Slip Boundary 
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Urnform Velocity - 'ilLr- -A- 9L L 
and Temperature, ' Neumann Conditions 

at the Outflow 

Figure 1. Computational domain for flow around a square cylinder 
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2.1.1. Steady and unsteady Flow. Steady and unsteady flows are governed by the steady and 
unsteady forms of the Navier-Stokes equations, respectively. The unsteady, conservative, dimen- 
sionless form of these equations in two dimensions for incompressible flow of a constant viscosity 
fluid is given below: 

x-momentum 

y-momentum 

continuity 

au av 
ax ay 
-+-=0, 

with 

(3) 

Here u,  is the uniform velocity of the fluid far away from the body. The boundary conditions are 
as follows: 

left boundary 

U = l ,  v=o, 
right boundary 

au av -=o, -=o, ax ax 
top and bottom boundaries 

v= 0, au 
ay 
-=O, 

solid surface of the cylinder 

u=o, I/= 0. 

The only governing parameter for this problem is the Reynolds number based on the length L 
of the sides of the square cylinder and is defined as 

(6) 
P U m  L Re=-.  

The steady flow field is governed by the same set of equations devoid of the unsteady term a@. 
P 

2.1.2. Linear stability analysis. This analysis involves the assumption that the perturbations to 
the steady flow are infinitesimally small. In the present study the stability of the two-dimensional 
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steady flow is analysed with respect to two-dimensional perturbations. Thus, in carrying out a 
linear stability analysis, all higher-order terms in perturbation quantities are neglected. Suppose 
that linear stability of a steady flow denoted by (Us, V,, P,) is being analysed. Then the governing 
equations for the two-dimensional perturbation quantities (U’, V, P’) are obtained by linearizing 
the unsteady Navier-Stokes equations about the steady base Aow. The boundary conditions for 
the perturbations are obtained by applying the boundary conditions of equation (5) to the total 
velocity (U + U’, V+ V‘). The resulting dimensionless equations and the boundary conditions are 
described below: 

u-perturbation 

u-perturbation 

continuity 

au’ a r  
ax ay 
-+-=O. (9) 

Note that, in deriving the above set of equations, use is made of the fact that the base flow 
(Us, V,, P, )  satisfies the steady equations. The quantities U’, I/‘ and P’ are dimensionless 
perturbation velocities and pressures and are non-dimensionalized in the same manner as in 
equation (5). The boundary conditions for the perturbation quantities are as follows: 

left boundary 

U’=O, V’=O, 

right boundary 

aul av 
ax ax -=O, -=O,  

top and bottom boundaries 

solid surface of the cylinder 

V=O, 
aur 
ay 

-=O,  

U’=O, V’=O. 

Then, in assessing the linear stability of a given steady flow (Us, V,, P,), the evolution of the 
perturbations, starting from an entirely arbitrary initial perturbation, is evaluated. If for all 
possible initial perturbations the perturbations decay, the flow is linearly stable. If, however, there 
exists at least one initial condition for which the perturbations grow, the flow is termed linearly 
unstable. 
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2.1.3. Temperaturefield. Since the properties of the fluid are constant, the temperature field 
needs to be computed only after a converged velocity field is obtained. For each steady and 
unsteady flow field the corresponding temperature field is computed by solving the energy 
equation. The square cylinder is assumed to be isothermally heated, exchanging heat to the cold 
fluid flowing around it, which is at a uniform temperature T ,  far away from the cylinder. The 
unsteady dimensionless form of the governing equation (assuming negligible viscous dissipation) 
and the corresponding boundary conditions are given below: 

with 

Here T ,  is the uniform temperature of the fluid far away from the body and T, is the 
temperature at which the square cylinder is maintained. Then, the boundary conditions for the 
temperature field are as follows: 

left boundary 

6=0, (134 
right boundary 

ae 
ax -=O, 

top and bottom boundaries 

ae 
ay 
-=O,  

solid surface of the cylinder 

The governing parameter for the temperature field is the Prandtl number of the fluid, Pr, in 
addition to the Reynolds number which governs the velocity field. In the present study all the 
computations for the temperature field are made for Pr =0.7. The steady temperature field for a 
given velocity field is governed by equation (11) devoid of the unsteady term. Note that the 
temperature field does not enter the linear stability analysis because the velocity field is decoupled 
from the temperature field owing to the assumption of constant fluid properties. 

3. SOLUTION METHOD 

The governing equations described above are discretized on a Cartesian grid and the resulting set 
of algebraic equations is solved to obtain a discrete solution of the problem. The details of the 
discretization, the strategies employed for obtaining steady solutions, the stability analysis and 
the techniques used for the solution of the algebraic equations are now described. 
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3.1. Discretization method 

The discretization method used in the present study utilizes a control volume formulation. The 
domain of interest is divided into a set of discrete control volumes. A grid point is located at the 
centre of each control volume and the value of the conserved variable is stored at each of the grid 
points. Discretization equations for the nodal unknown at a grid point are then obtained by 
conserving the flux of that variable over the control volume that surrounds the grid point. This 
requires the evaluation of the total flux of the conserved variable fhrough each face of the control 
volume. In the present study the power-law scheme proposed by Patankar” is used to compute 
the combined convection and diffusion flux through a control volume face in terms of the values 
of the variable at the grid points which envelop the face. A staggered grid is employed for storing 
the velocity components. Thus the control volume for the x- (or y-) direction velocity is displaced 
in the x- (or y-) direction with respect to the control volume for continuity. This use of a staggered 
grid prevents the occurrence of checkerboard pressure fields. A detailed description of this 
discretization method is given by Patankar.L * 

3.2. Computation of steady Jows using continuation 

The first step in the analysis is to obtain steady flows at different Reynolds numbers. If the 
steady flow being sought is unstable, iterative solution techniques such as SIMPLER,l2 which 
solve discretized momentum and continuity equations in a segregated manner, are unlikely to 
converge to a solution when utilized for solving the steady form of the discretized equations. 
Alternative techniques that incorporate direct matrix solution of the discretization equations with 
a good starting guess to the solution are needed to compute the steady flow. Continuation 
methods can be used to construct a good initial guess. 

Any of the continuation methods described by Kubicek and Marekj provides a systematic way 
for computing steady flows. Since in this problem the solution branch for steady solutions at 
different Reynolds numbers is expected to be monotonic, a Newtonian-Raphson continuation, 
instead of a more complicated arc length continuation, is sufficient and has been employed in the 
present study. The details of the Newton-Raphson continuation procedure are described here. 

The set of algebraic discretization equations for steady flow can be written as 

A Z = B  (14) 

or more conveniently as 
F(Z,Re)=O, 

where the vector of nodal unknowns, Z, is 

z = (U, v, P). 
This continuation procedure, in essence, consists of starting from a known solution and 

extrapolating along the local tangent to the solution branch to obtain an initial guess to the 
solution at the desired increment in the value of the parameter and then iteratively refining this 
initial guess to obtain the exact solution at this new value of the parameter. Mathematically, this 
is equivalent to expanding the left side of equation (15) as a Taylor series around the starting 
solution (Z, , Re,) and neglecting all higher-order terms. Thus 

J , A Z +  (”> ARe=O, 
aRe (Z,,Re,) 

(17) 

where J, denotes the Jacobian matrix at Z , .  Thus starting from (Z,,Re,) ,  for a given ARe, an 
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initial guess Z* = Z, + AZ can be constructed for the solution at Re = Re, + ARe. This initial 
guess is improved using a Newton-Raphson iteration to obtain the correct solution at Re as 

and 
J" AZ" + = - F(Z", Re) 

z n +  1 = zn + Azn+ 1 

until AZ" is small. Here n indicates the number of iterations of the Newton-Raphson procedure. 
Note that equations (18) and (19) represent an iteration of the Newton-Raphson procedure 
performed to obtain the correct solution at Re, + Re and are distinct from the first-order 
continuation represented by equation (1 7). 

If the increment ARe in extrapolating the solution as in equation (17) is not large, the initial 
guess Z* is very close to the correct solution and subsequent Newton-Raphson iterations 
converge rapidly. Thus, starting from a known solution (Z,, Re,), by solving equation (17) in 
conjunction with equations (18) and (19), the steady solutions can be computed at the desired 
increments in Reynolds number. 

3.3. Linear stability analysis 

3.3.1. Initial value problem. To analyse the linear stability of a computed steady flow, the 
corresponding discrete equations governing the evolution of small perturbations to this steady 
flow are required. Analogous to the derivation of equations (7) and (8) from equations (1) and (2), 
discrete equations for the evolution of the perturbation are obtained directly by linearizing the 
discretization equations around the steady flow solution, the stability of which is to be analysed. 
Thus let the steady flow, the stability of which is to be investigated, be denoted by (Zs, Re,). Then 
the small perturbations to this flow are governed by 

dZ' 
dz 

M -+ JsZ'=O, 

where Z =(U',V,P) are discrete perturbations and Js is the Jacobian matrix evaluated at the 
steady solution. Since the flow is assumed to be incompressible, the unsteady term in the 
continuity equation is absent. Hence the matrix M in the above equation has unit values along 
the part of the diagonal that corresponds to the unsteady term in the linearized momentum 
equations and contains zeros everywhere else. This set of equations needs to be solved for 
arbitrary initial conditions on the perturbations. Note that equation (20) can also be solved as an 
eigenvalue problem. Then the real part of the most unstable eigenvalue indicates whether the flow 
is stable or unstable and the corresponding eigenvector gives the most unstable form of the 
perturbation. In the present study equation (20) is solved as an initial value problem, because the 
interest lies in determining the stability of the flow and hence only in the most unstable 
eigenvalue, and the solution of the initial value problem asymptotically filters out this most 
unstable eigenvalue and the corresponding most unstable form of the perturbation to the steady 
flow. The initial condition on perturbations is chosen to be an arbitrary asymmetric variation of 
grid point excitations. Analogous to the observation that a particular harmonic is unlikely to be 
absent in the Fourier spectrum of an arbitrary waveform, it is virtually unlikely that the most 
dangerous perturbation (most unstable eigenfunction) will escape an arbitrary asymmetric 
variation of initial perturbations. Then, by choosing an appropriate temporal discretization, the 
evolution of perturbations can be computed starting from an initial guess. If the perturbations 
decay asymptotically, the steady flow is linearly stable, while if the perturbations grow, the flow is 
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unstable. By studying the variation of the asymptotic rate of growth of perturbations to the 
steady flow with Reynolds number, the point of instability can be determined. 

3.3.2. Choice of time-stepping scheme. The asymptotic behaviour of perturbations computed 
by solving an initial value problem is subject to errors introduced by temporal discretization. 
Therefore the temporal discretization scheme should be properly selected to predict the point of 
instability of the steady flow. An analysis of implicit, explicit and Crank-Nicholson time-stepping 
techniques is carried out to demonstrate the suitability of the Crank-Nicholson technique. 

Consider a model linear initial value problem as follows: 

dR 
dt 
-=GR 

subject to an initial condition on R. This model problem is chosen over the original problem 
described by equation (20) in order to elucidate the analysis of time-stepping techniques and to 
isolate this analysis from the apparent complication of the absence of the unsteady term in the 
continuity equations for grid point perturbations which is addressed later in this section. Let an 
eigenvalue of matrix G be denoted by a. Then the evolution of the magnitude C(t) of the 
corresponding eigenvector from its initial magnitude C(0) is given by 

where o = a, + ia, . 
Although the following analysis applies to any eigenvalue for the matrix G, in the context of 

stability analysis it is taken to be the most unstable eigenvalue of the matrix G. Then temporal 
discretization yields 

where C" denotes the value of C at time level n and a is a fraction such that a=O, 1 and 0.5 
correspond to explicit, implicit and Crank-Nicholson time stepping respectively. Then the 
amplification of C(t) for a time step is defined as 

C"+l l+(l-a)oAt f=-= 
C" 1-aaAt ' 

Note that for a finite time step size the amplification factor will always be in error from the 
analytical value of eUA'. However, in order to locate the point of instability correctly, the desirable 
time stepping should predict a growth (decay) of C(t) if the real part a, of the eigenvalue a is 
positive (negative), i.e. 

1 f l 2  - 1 > 0 when a, > 0, 
lfI2-1<0 when aIcO, 
I f l z - l = O  when a,=O. 

For explicit time stepping, equation (24) with a=O yields 

(f(2-l=22a,At+(aT+oz)At2. (24) 
Thus, clearly, the explicit time stepping introduces an additional growth of perturbations at a, =O 
and can result in an underprediction of the point of instability. 
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For implicit time stepping (a= 1) 

1 
1 - 2o,At + (of + a?)At2 ' 

I f  12-1, 

Thus the implicit time stepping introduces an extra decay of perturbations at a, =O and can result 
in overprediction of the point of instability. 

For Crank-Nicholson time stepping (a = 0.5) 

2a, At I f  1 2 - 1 =  
(1 -0.5~,At)~+(0.50iAt)~ . 

Thus the Crank-Nicholson technique obeys the conditions in equation (25). Therefore, if this 
technique is used to compute the evolution of perturbations, they will always decay (grow) when 
the flow is stable (unstable), though at a rate which is of second-order accuracy compared to the 
analytical value. 

Note that the linear stability problem described by equation (20) can be reduced to the form of 
equation (21) by Gaussian elimination of unknown perturbation pressures, so that the results of 
this analysis are equally applicable to temporal discretization for the problem of interest. Hence 
the Crank-Nicholson time-stepping technique is adopted for calculation of the evolution of 
perturbations to the steady flow. Owing to the second-order accuracy of the Crank-Nicholson 
scheme, it is also employed for the computation of the periodic flow that occurs after the onset of 
instability. 

3.4. Computational details 

A rectangular grid of size 80 x 80 is employed for discretization. The grid is finer near the 
surfaces of the square cylinder to better resolve the gradients near the wall. A computation of 
steady flow for Re=50 with a grid of 120x 120 changed the drag coefficient on the body 
by 0.85%. As stated earlier, the boundaries of the domain are located sufficiently far from the 
body so as not to affect the flow near the body. The particular distances are shown in Figure 1. 
Any further movement of these boundaries away from the body changed the drag coefficient for 
steady flow around the body at Re = 50 by only 054% for a grid of 80 x 80. Hence this grid size is 
deemed sufficiently fine for accurate computations. 

The continuation procedure described earlier is used to compute steady flow at Reynolds 
numbers between 10 and 100 at fixed increments of 10 with a known starting solution at Re =0.1. 
Linear stability of each of the computed steady flows is studied by solving the initial value 
problem for the perturbation quantities and the critical Reynolds number (point of instability) is 
determined. A variety of initial guesses for perturbations were used for the case of Re=70 to 
ensure that the asymptotic form and growth rate of perturbations are independent of the 
arbitrarily chosen initial perturbations and that, in general, an arbitrarily chosen initial condition 
on perturbation is very unlikely to exclude the most unstable form of perturbations. Finally, 
periodic unsteady flow is computed at Re= 100, which is above the point of instability. A 
dimensionless time step of 0.12 is used for unsteady computations of perturbations as well as the 
unsteady periodic flow to resolve the unsteady behaviour accurately. 

Direct as well as iterative solution techniques are used for solving the algebraic equations. 
Direct matrix solution is used for systems of equations which arise in Newton-Raphson 
continuation (equations (17) and (18)) for reasons described earlier and in the calculation of the 
evolution of perturbations (equation (20)) for linear stability analysis of steady flow as well. It is 
worth noting that the direct solution technique is particularly suited for the solution of the linear 
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stability problem because the problem is linear and for a fixed value of the time step the coefficient 
matrix is fixed so that it can be factorized once at the start of the calculation. The Yale Sparse 
Matrix Package by Eisenstat et a l l 3  is used for direct solution of the algebraic equations. The 
iterative solution procedure SIMPLER, proposed by Patankar,’ is employed for the com- 
putation of the unsteady flow at Re = 100 as well as for constructing a starting solution of steady 
flow at Re=O.l for the continuation procedure. 

4. RESULTS AND DISCUSSION 

Results of the steady flow computations, their stability analysis and subsequent computation of 
the periodic flow at a Reynolds number above the limit of stability will now be described. 

4.1. Steady $ow and linear stability analysis 

Figure 2 shows streamline patterns for some of the computed two-dimensional steady flows. As 
the Reynolds number increases, the size and strength of the recirculation increase. The evolution 
of small two-dimensional perturbations to these steady flows is obtained from the stability 
analysis. Figure 3 shows the evolution of u-velocity perturbations at two points in the vicinity of 
the square cylinder-one upstream (position 1) and one downstream (position 2) of the square 
cylinder-for Re= 50 and 60. Note that for Re = 50 all the perturbations decay asymptotically 
while for Re = 60 the perturbations grow with time. Thus the point of instability lies between 
Re = 50 and 60. To obtain the critical Reynolds number more accurately, the variation of the real 
part of the dimensionless growth rate of the perturbations with Reynolds number is plotted in 
Figure 4. The critical Reynolds number then corresponds to 6, = 0 and is seen to have a value of 
53. Thus a steady flow cannot persist beyond this Reynolds number and is not expected to be 
observed in practice. Figure 5 shows the form of instantaneous streamlines of the most unstable 
perturbation for Re = 50 and 60. The two-dimensional unsteady flow after the critical Reynolds 
number results from an interaction of this unstable perturbation and the original unstable steady 
flow. Also, since the perturbations evolve in an oscillatory manner as seen in Figure 3, the flow 

Re = 10 Re = 40 

Re = 60 Re = 80 

Figure 2. Streamline patterns for steady flow around a square cylinder at different Reynolds numbers 
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Figure 3. Variation of small perturbations with dimensionless time at two positions in the vicinity of a square cylinder at 
Re = 50 and 60 
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t 

Re 

Figure 4. Variation of the growth rate of the most unstable perturbation to the steady flow with Reynolds number 

Re = 50 Re = 60 

Figure 5. Instantaneous streamlines of the most unstable perturbation to the steady flow at Re=50 and 60 

after the critical point is unsteady and time-periodic and the bifurcation at the point of instability 
is a Hopf bifurcation. 

Some comments on the involved computational costs are in order. Computations were camed 
out on a CYBER-205 supercomputer. The computation of the unsteady flow at Re= 100 required 
3.7 CPU hours for the seven periodic cycles and the initial transient appearing in Figure 8, while 
solution of a typical initial value problem for the evolution of perturbations to a steady flow, the 
stability of which is to be determined, required 0-85 CPU hours for the same number of time steps. 

4.2. Unsteady $ow 

The periodic vortex shedding obtained after the critical Reynolds number has been computed 
at Re=100. Streamlines for the unstable steady flow at this Reynolds number are shown in 
Figure 6. Figure 7 shows instantaneous streamlines and isotherms at three different times within a 
cycle of the periodic vortex shedding (starting and ending instants are the same). The oscillatory 
nature of the wake behind the cylinder can be clearly seen in these patterns. 
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Streamlines Isotherm 

Re = 100 

Figure 6. Streamlines and isotherm pattern for unstable steady flow at Re= 100 and Pr=O7 
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Figure 7. Instantaneous streamlines and isotherm patterns during one cycle of periodic unsteady flow behind a square 
cylinder at Re = 100 with Pr = 0.7 
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Figure8 shows the variation of the lift and drag coefficients for the cylinder, defined as 
C,=F,/($pU; L)  and CD= FD/(ipU; L), F ,  and F ,  being the lift and drag forces on the 
cylinder. The period of oscillation of the lift coefficient gives a Strouhal number of 0.126, which 
agrees very well with the experimental value of 0 1  18 reported by Okajima.g The overall Nusselt 
number for the body, however, does not show much oscillation, as seen in Figure 9, owing to the 
averaging effect of the oscillating wake. The value of the Nusselt number is 3.25 compared to the 
value of 3.298 for the steady flow, indicating that the unsteady flow does not augment heat 
transfer from the cylinder in any significant manner. However, the temperature fields in the wake 

Figure 8. Variation of lift and drag coefficients for a square cylinder with time for unsteady flow at Re= 100 

x 
0.0 10.0 10.0 30.0 M.0 50.0 60.0 70.0 

Time 
Figure 9. Variation of the Nusselt number for a square cylinder with time for unsteady flow at Re= 100 



VORTEX SHEDDING BEHIND A SQUARE CYLINDER 34 1 

for steady and unsteady flow at Re = 100 are entirely different, as seen from a comparison of the 
isotherm patterns in Figures 6 and 7. 

5. CONCLUSIONS 

Linear stability analysis is used to predict the onset of instability in the flow around a square 
cylinder. The two-dimensional steady flow around the cylinder at different Reynolds numbers is 
computed using the Newton-Raphson continuation technique. The stability of these steady flows 
to small two-dimensional disturbances is analysed by solving the initial value problem for the 
perturbation quantities. An analysis of the time-stepping techniques shows that the 
Crank-Nicholson technique, irrespective of the size of time step used, predicts the temporal 
behaviour of the perturbations and hence the stability of the steady flow correctly. The critical 
Reynolds number is inferred from the variation of the rate of growth of the perturbations with the 
Reynolds number. Computations for unsteady flow at a Reynolds number above the critical value 
yield a value of the ’Strouhal number which is very close to its experimentally observed value. 
Finally, although the temperature fields in the wake for steady and unsteady flow are quite 
different, the overall heat tfansfer from the square cylinder in unsteady flow is almost the same as 
that in steady flow. 
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